

Solutions for High Frequency Printed Circuit Boards

Mika Sillgren

European Research and Marketing
Panasonic Industrial Devices Materials Europe GmbH
Munich - 28th of June, 2016

Content

- High speed laminate trends
- Key characteristics of dielectric laminates for high frequency/speed circuit boards
 - Resin system
 - Glass cloth
 - Copper foil
- Summary and Key takeaways

High speed laminate trends – Examples of Applications

High speed laminate trends – ICT Segment

Content

- High speed laminate trends
- Key characteristics of dielectric laminates for high frequency/speed circuit boards
 - Resin system
 - Glass cloth
 - Copper foil
- Summary and Key takeaways

Electrical characteristics of resin – Why Low Dk/Df for High Frequency boards?

Formula of Transmission Loss (by Edward A Wolff)

Transmission Loss (α) = Conductor Loss(α_c) + Dielectric Loss(α_d)

$$\alpha_{\rm c} \propto \sqrt{Dk} \times R(f)$$

$$\alpha_{\rm d} \propto 27.3 \times f/c \times \sqrt{Dk} \times Df$$

R(f): Surface Resistance, Dk: Dielectric Constant

Df : Dissipation Factor, f : Frequency

c : Light Velocity

h : Dielectric Layer Thickness

w : Conductor Width t : Conductor Thickness

- \triangleright Reduction of α_c : Lower Profile or Profile-free Conductor
- \triangleright Reduction of α_d : Low Dk & Df Materials

- Signal transmission loss is sum of conductor loss and dielectric loss.
- Dk and Df are both impacting on transmission loss.

Electrical characteristics of resin and glass cloth (Dk & Df)

Properties of glass		E-glass	Low Dk glass
ε	10GHz	6.6	4.7
tanδ	10GHz	0.0066	0.0035
Thermal expansion	ppm/degC	5.5	3.4
Density	g/cm3	2.54	2.30

Final properties of laminates and prepregs are combination of properties of resin- and glass cloth used.

Electrical characteristics of resin – Transmission loss comparison

Lower Dk & Df of materials has direct impact on signal transmission loss.

Electrical characteristics of glass – E-glass vs. Low Dk glass

- ➤ The difference of transmission loss between E-glass and Low Dk-glass version of MEGTRON7 material is ~4dB/m at 20GHz.
- The impact is almost on the same as the difference between H-VLP and RT copper foil.

Key characteristics – Spreading of glass cloth

Differences in Propagation delay & loss are minimized with

Spread-out Glass

Glass DK = 6.4 (IPC-4412)

3.1.6.1 Dielectric Constant for Base E-Glass

The DK of base E-glass to be used for printed board applications is 6.4 @ 1 GHZ

(as measured by IPC-TM-650, Method 2.5.5.9)

 \triangleright Resin/Filler Dk = 2.5 - 4.5

Key characteristics – Dk difference between glass and resin ("Skew effect")

Key characteristics – Conventional glass vs. Spread-out glass

Delay Time vs Frequency

Cross Section of Warp yarn

Cross Section of Fill yarn

Key characteristics – Why copper foil roughness is important? ("Skin effect")

Frequency	Skin effect depth
10 kHz	660 μm
100 kHz	210 μm
1 MHz	65 μm
10 MHz	21 μm
100 MHz	6.6 μm
1 GHz	2.1 μm
10 GHz	0.7 μm

Copper profile is one of the main contributors for transmission loss for high frequency signals.

Key characteristics – Transmission loss vs.

Copper foil type

- Copper profile impact on transmission loss is getting bigger with higher frequencies.
- > Copper foil profile has significant effect on transmission loss.

Content

- High speed laminate trends
- Key characteristics of dielectric laminates for high frequency/speed circuit boards
 - Resin system
 - Glass cloth
 - Copper foil
- Summary and Key takeaways

Summary and Key takeaways

- Higher the frequency requirements for application/PCB → more you need to understand laminates used in it.
- Resin system, glass cloth and copper foil have all significant impact on transmission loss in high frequency PCB's – good performance can be lost by specifying wrong property for other parameter.
- Low loss resin system, smooth copper profile and use of spreaded glass cloth style with Low Dk/Df properties, help to tackle challenges of high frequency signals.

Panasonic

Panasonic